VEREIN DEUTSCHER INGENIEURE VERBAND DER

INFORMATIONSTECHNIK

Zu beziehen durch / Available at Beuth Verlag GmbH, 10772 Berlin – Alle Rechte vorbehalten / All rights reserved © Verein Deutscher Ingenieure e.V., Düsseldorf 2020

Drehmomentmessgeräte/Messketten Mindestanforderungen an Kalibrierungen **ELEKTROTECHNIK ELEKTRONIK**

VDI/VDE 2646

Berichtigung / Corrigendum

Torque measuring devices/measuring chains -Minimum requirements in calibrations

Berichtigung zur Richtlinie VDI/VDE 2646:2019-12 Corrigendum concerning standard VDI/VDE 2646:2019-12

Anmerkung: Wir empfehlen, auf der betroffenen Richtlinie einen Hinweis auf diese Berichtigung anzubringen.

Note: We recommend placing a reference to this Corrigendum on the standard concerned.

VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA) Fachbereich Fertigungsmesstechnik

Korrekturhinweis

In Tabelle 1 auf Seite 17 ist die relative Standardmessunsicherheit w für Spannweite b falsch angegeben. Tabelle 1 muss korrekt lauten (korrigierte Gleichung ist grau unterlegt):

Erratum

In Table 1 on page 17, the relative standard measurement uncertainty w for measuring range b is stated incorrect. Table 1 must be corrected to read (corrected equation is marked grey):

Tabelle 1. Verteilungsfunktionen für die Berechnung der relativen Standardmessunsicherheiten

Kennwert	Verteilungsfunktion	Relative Standardmessunsicherheit w in %
Auflösung des Anzeigegeräts r	Typ B Rechteckverteilung	$w_{\rm r} = \frac{r}{2 \cdot \sqrt{3}} \cdot \frac{100}{M_{\rm K}}$
Spannweite b' in gleicher Einbaustellung	Typ B Rechteckverteilung	$w_{b'} = \frac{b'}{2 \cdot \sqrt{3}} \cdot \frac{100}{Y}$
Spannweite <i>b</i> (Erläuterung in Abschnitt 6.4.4)	Typ B U-Verteilung	$w_{\rm b} = \frac{b}{2 \cdot \sqrt{2}} \cdot \frac{100}{Y}$
Umkehrspanne h	Typ B Rechteckverteilung	$w_{\rm h} = \frac{h}{2 \cdot \sqrt{3}} \cdot \frac{100}{Y}$
Nullpunktabweichung f ₀	Typ B Rechteckverteilung	$w_0 = \frac{f_0}{2 \cdot \sqrt{3}} \cdot \frac{100}{M_K}$

Table 1. Distribution functions for the calculation of relative standard measurement uncertainties

Characteristic value	Distribution function	Relative standard measurement uncertainty w, in %
Resolution <i>r</i> of the indicating device	Type B rectangular distribution	$w_{\rm r} = \frac{r}{2 \cdot \sqrt{3}} \cdot \frac{100}{M_{\rm K}}$
Measuring range b' in the same mounting position	Type B rectangular distribution	$w_{b'} = \frac{b'}{2 \cdot \sqrt{3}} \cdot \frac{100}{Y}$
Measuring range <i>b</i> (see Section 6.4.4 for explanations)	Type B U distribution	$w_{\rm b} = \frac{b}{2 \cdot \sqrt{2}} \cdot \frac{100}{Y}$
Reversibility h	Type B rectangular distribution	$w_{\rm h} = \frac{h}{2 \cdot \sqrt{3}} \cdot \frac{100}{Y}$
Zero error f ₀	Type B rectangular distribution	$w_0 = \frac{f_0}{2 \cdot \sqrt{3}} \cdot \frac{100}{M_K}$

Wir bitten Sie, diesen Fehler zu entschuldigen!

We apologise for this mistake!