

Elektromobilität und regenerative Energie

Rahmenbedingungen – Energienutzung – Stand der Technik – Ladeinfrastruktur

Prof. Dr.-Ing. Joachim Landrath

Globale Rahmenbedingungen

Wolfenbüttel

Klimawandel – Emissionen

Smog und Lärm in Megacities

Endlichkeit fossiler Ressourcen

Globale Rahmenbedingungen

Gesetzliche CO₂ Zielvorgaben für PKW (Fahrbetrieb)

Energieerzeugung mit fossilen Primärenergie (Benzin, Diesel) ist direkt proportional zur CO₂-Erzeugung:

> 1 I Benzin → 2,3 kg CO₂ 1 | Diesel \rightarrow 2,6 kg CO₂

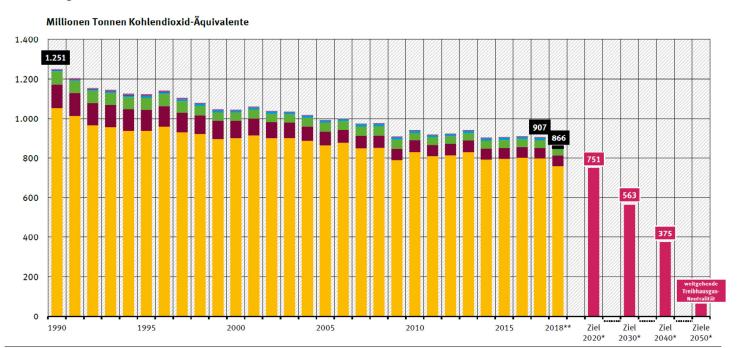
 \rightarrow 5 | Benzin \rightarrow 11,5 kg CO₂ \rightarrow 115 g CO₂/km

 \rightarrow 5 I Diesel \rightarrow 13,0 kg CO₂ \rightarrow 130 g CO₂/km

 \rightarrow 95 g CO₂/km \rightarrow 4,1 l Benzin/100km bzw. 3,7 l Diesel/100km

Elektromobilität - CEMO - Landrath

Hameln - 22.08.2019


Deutsche Rahmenbedingungen

Ostfalia Hochschule für angewandte Wissenschaften

Wolfenbüttel

Treibhausgas-Emissionen seit 1990 nach Gasen

Emissionen ohne Landnutzung, Landnutzungsänderung und Forstwirtschaft

* Ziele 2020 bis 2050: Energiekonzept der Bundesregierung (2010)

■ Distickstoffoxid (Lachgas, N₂O)

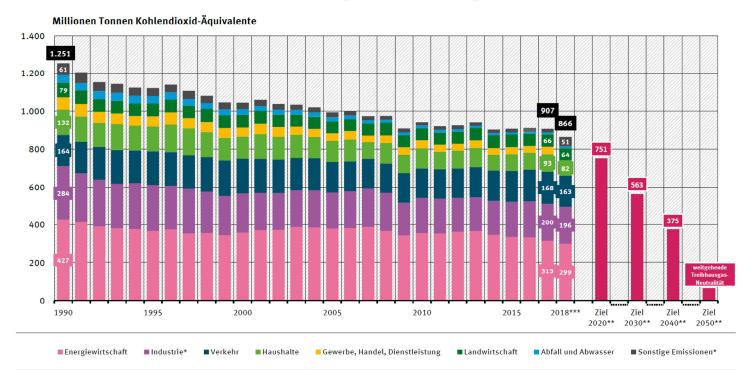
Kohlendioxid (CO2)

■ Perfluorierte Kohlenwasserstoffe (FKW) ■ Stickstofftrifluorid (NF_a)

■ Schwefelhexafluorid (SF₄)

Wasserstoffhaltige Fluorchlorkohlenwasserstoffe (H-FKW)

■ F-Gase gesamt (2018)**


Quelle: Umweltbundesamt, Nationale Treibhausgas-Inventare 1990 bis 2017 (Stand 01/2019) und Zeitnahschätzung für 2018 aus UBA Presse-Information 09/2019 (korrigiert)

Deutsche Rahmenbedingungen

Emission der von der UN-Klimarahmenkonvention abgedeckten Treibhausgase

Emissionen nach Kategorien der UN-Berichterstattung ohne Landnutzung, Landnutzungsänderung und Forstwirtschaft

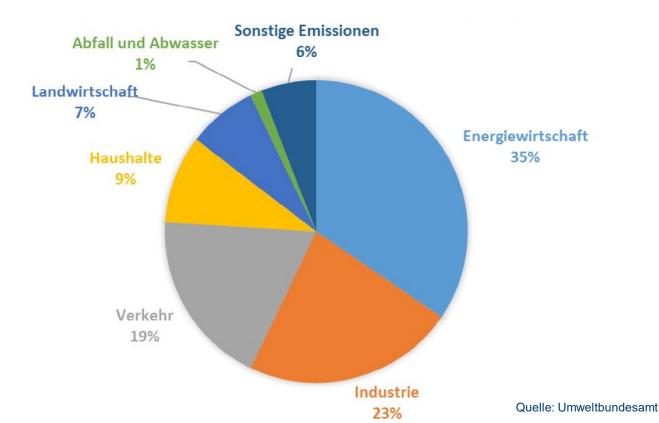
* Industrie: Energie- und prozessbedingte Emissionen der Industrie (1.A.2 & 2);
Sonstige Emissionen: Sonstige Feuerungen (CRF 1.A.4 Restposten, 1.A.5 Militär) & Diffuse Emissionen aus Brennstoffen (1.B)

** Ziele 2020 bis 2050: Kilmaschutzplan 2050 der Bundesregierung *** Schätzung 2018, Emissionen aus Gewerbe, Handel & Dienstleistung in Sonstige Emissionen enthalten

Elektromobilität - CEMO - Landrath

Quelle: Umweltbundesamt, Nationale Treibhausgas-Inventare 1990 bis 2017 (Stand 01/2019) und Zeitnahschätzung für 2018 aus UBA Presse-Information 09/2019 (korrigiert)

Hameln - 22.08.2019


Deutsche Rahmenbedingungen

Ostfalia Hochschule für angewandte Wissenschaften

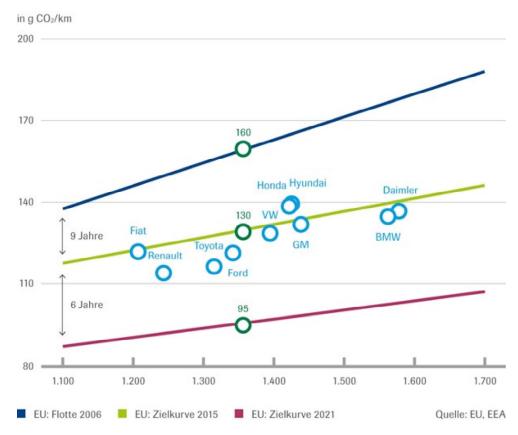
Wolfenbüttel

TREIBHAUSGASEMISSIONEN NACH KATEGORIEN 2018

Wollenbutter

Gesetzliche CO₂ Zielvorgaben für PKW (Fahrbetrieb)

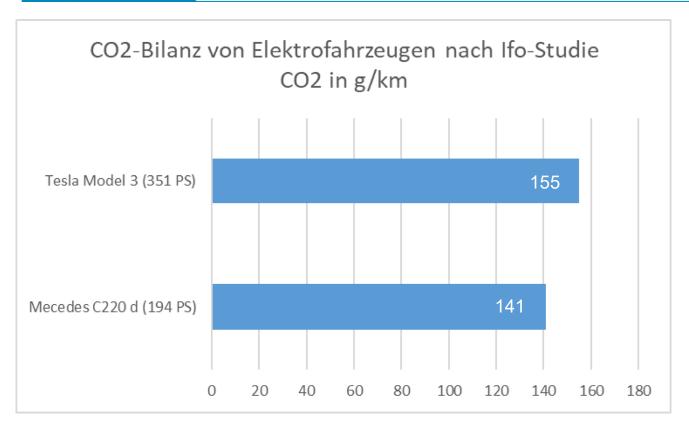
Elektromobilität – CEMO – Landrath


Hameln - 22.08.2019

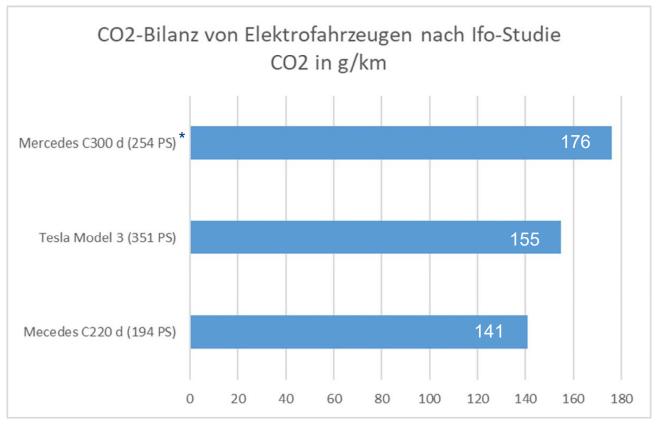
Wolfenbütte

CO₂-Zielwerte der Neuwagenflotte, die den Grenzwert einhalten muss: - 2020 zu 95%, - 2021 zu 100%

Wichtige Randbedingungen für CO₂-Bilanz von Elektrofahrzeugen


- Fahrzeugenergieverbrauch (im Fahrbetrieb im WLTP-Zyklus) (abhängig von Fahrzeugmasse, Fahrwiderstände, Batteriegröße, ...)
- Berücksichtigung nicht nur der Energie zum Fahren, sondern des Energieverbrauchs im gesamten Lebenszyklus (+ Produktionsenergie, Recycling, ...)
- Wo wird die Batterie produziert → Energiemix am Produktionsstandort
 → CO₂-Emissionen (Ökostrom bis CO₂-intensiver Strommix)
- Energiemix der Betriebsenergie von Elektrofahrzeugen (Ökostrom bis CO₂-intensiver Strommix)
- Laufleistung der Fahrzeuge (150.000 km bis 250.000 km)

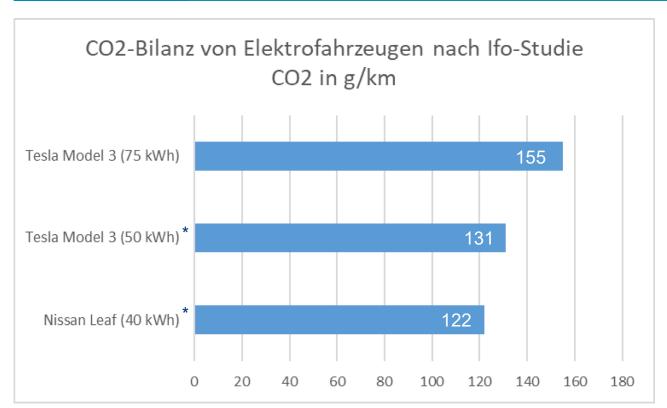
Elektromobilität - CEMO - Landrath


Hameln - 22.08.2019

Wolfenbüttel

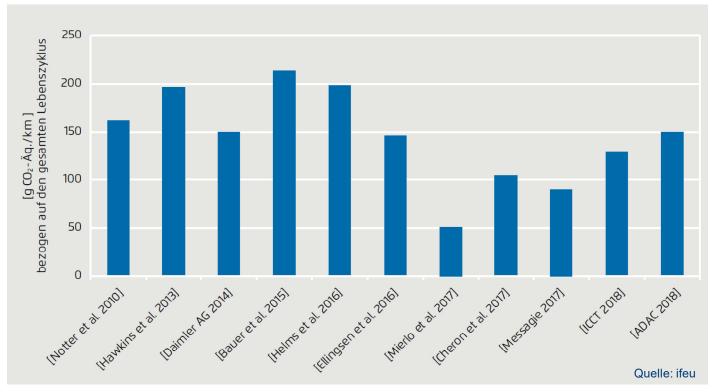
Quelle: CO2-Emissionen aus Ifo-Studie

Quelle: CO2-Emissionen aus Ifo-Studie
* und Berechnungen des Spiegel


Hameln – 22.08.2019

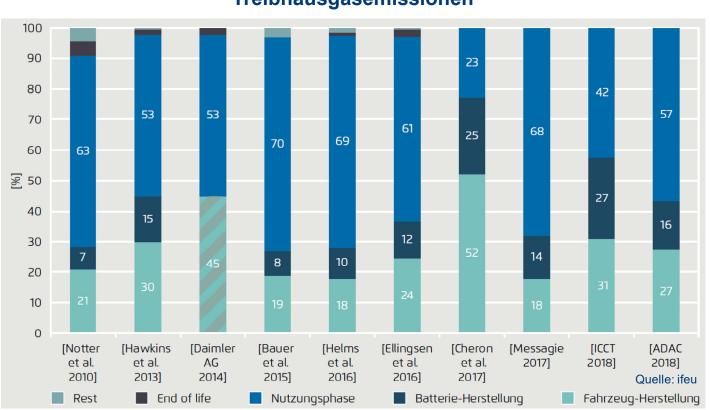
Elektromobilität – CEMO – Landrath

Ostfalia
Hochschule für angewandte
Wissenschaften


Wolfenbüttel

Quelle: CO2-Emissionen aus Ifo-Studie
* und Berechnungen des Spiegel

Vergleich der Treibhausgasemissionen eines Elektroautos pro Fahrzeugkilometer bezogen auf den gesamten Lebenszyklus


Elektromobilität - CEMO - Landrath

Hameln - 22.08.2019

Ostfalia
Hochschule für angewandte
Wissenschaften

Wolfenbüttel

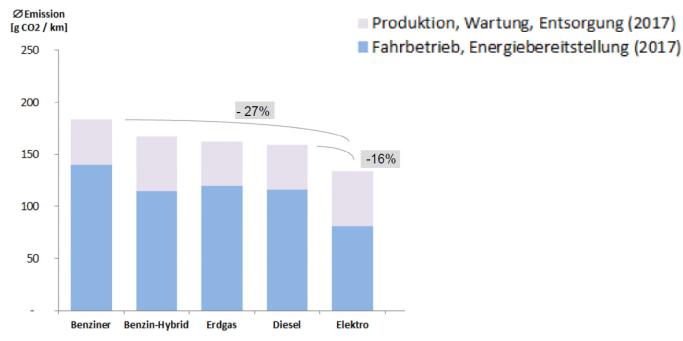
Vergleich des Beitrags einzelner Lebensabschnitte zu den Treibhausgasemissionen

Randbedingungen der CO₂-Bilanz von Elektrofahrzeugen des BMU

- unter Verwendung des deutschen Strommix, und nicht mit 100% Erneuerbaren;
- unter Einrechnung der Verluste zwischen Kraftwerk, Steckdose und Fahrzeugbatterie,
- unter Verwendung **realer Energieverbräuche** (Kraftstoffe bzw. Strom) wie sie in Alltagstests ermittelt werden, beim Elektroauto sogar mit einem noch darüberhinausgehenden Zuschlag von **15 Prozent**, da auch Alltagstest manchmal nicht alle **Temperaturbereiche** abdecken;
- unter Berücksichtigung des gesamten Lebenszyklus der Fahrzeuge, also einschließlich der Produktion, dem Betrieb mit Strom bzw. bei den Vergleichsfahrzeugen mit Kraftstoffen und einschließlich der Entsorgung aller Fahrzeugkomponenten inklusive Batterie;
- unter Verzicht auf Gutschriften, die aus einer möglichen Zweitverwendung der Batterie("Second Life") oder aus einem die Einspeisung von erneuerbaren Energien begünstigenden gesteuerten Laden zukünftig einmal resultieren könnten;
- unter der Annahme, dass auch Elektrofahrzeuge im Schnitt schon nach etwa zwölf Jahren verschlissen sind und außer Betrieb genommen werden, so wie dies auch für die Verbrenner angenommen wurde;
- nicht im Vergleich mit einem deutschen Durchschnittsfahrzeug, sondern mit aktuellen, besonders verbrauchsarmen Modellen mit Verbrennungsmotor, inklusive eines Hybridund eines Erdgasfahrzeugs;
- unter Anrechnung von zunehmenden Emissionsminderungen bei Benzin und Diesel, vor allem aufgrund der Beimischung von Biokraftstoffen, entsprechend der geltenden Vorgaben.

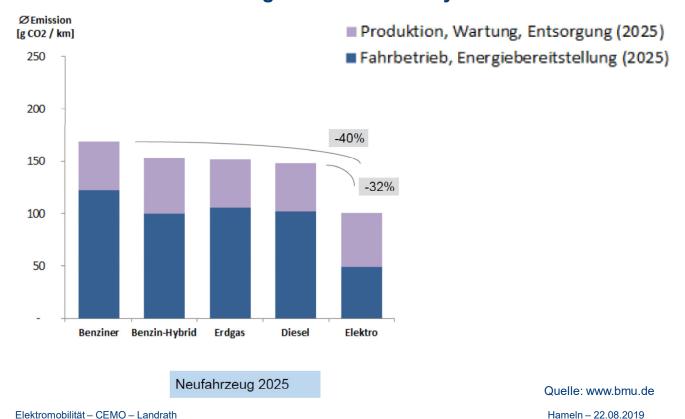
Elektromobilität - CEMO - Landrath

Quelle: www.bmu.de


Hameln - 22.08.2019

Ostfalia Hochschule für angewandte Wissenschaften

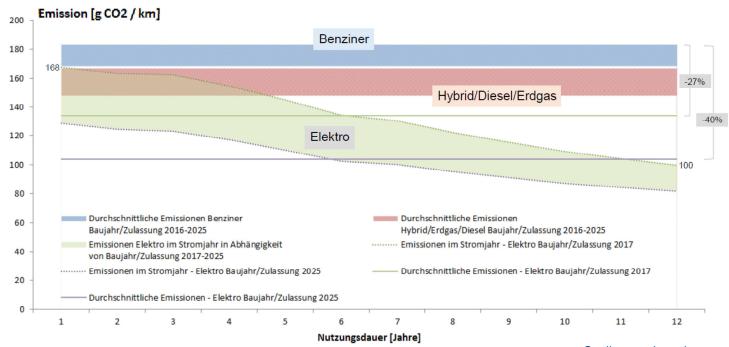
Wolfenbüttel


CO₂-Emissionen pro Fahrzeugkilometer über den gesamten Lebenszyklus

Neufahrzeug 2017

Quelle: www.bmu.de

CO₂-Emissionen pro Fahrzeugkilometer über den gesamten Lebenszyklus



Ostfalia
Hochschule für angewandte
Wissenschaften

fenbüttel

CO₂-Emissionen der verschiedenen Vergleichsfahrzeuge pro Fahrzeugkilometer nach Nutzungsjahren aufgeschlüsselt

Der Darstellung liegen ebenfalls alle oben genannten Annahmen zugrunde, das heißt die Bilanz berücksichtigt den gesamten Lebenszyklus des Fahrzeugs.

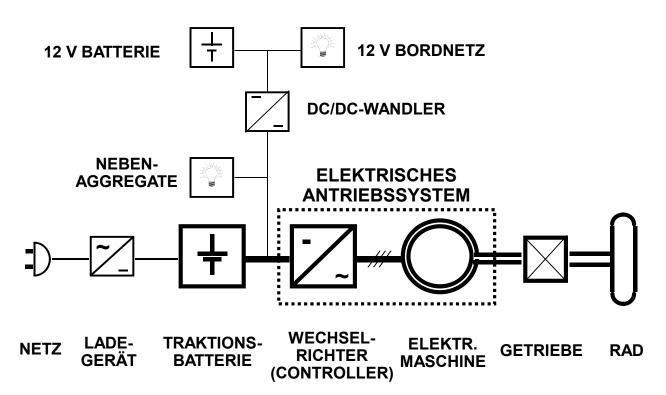
Quelle: www.bmu.de

Elektromobilität – CEMO – Landrath

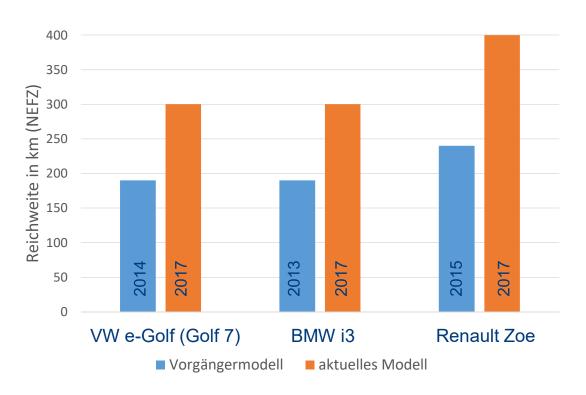
Hameln - 22.08.2019

Elektromobilität

Stand der Technik

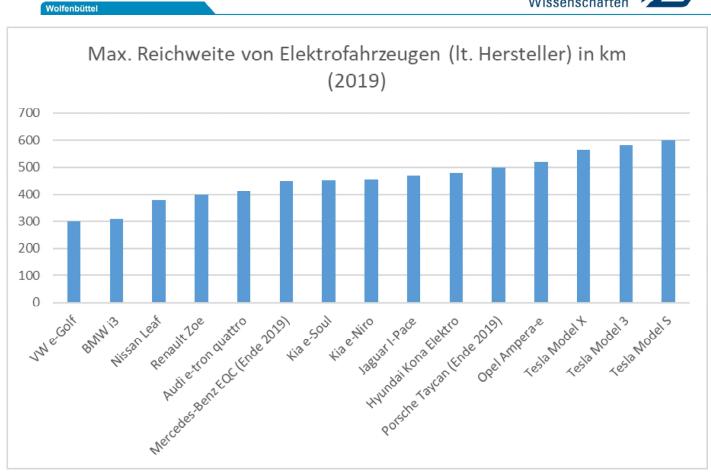

Elektromobilität - CEMO - Landrath

Hameln - 22.08.2019


Wolfenbütte

Prinzip der Antriebsstruktur eines Elektrofahrzeugs

Entwicklung der Reichweiten aktueller Elektrofahrzeuge



Elektromobilität - CEMO - Landrath

Hameln - 22.08.2019

Elektromobilität - Stand der Technik

Ostfalia
Hochschule für angewandte
Wissenschaften

Elektro-Konversionsfahrzeug

Ostfalia
Hochschule für angewandte
Wissenschaften

Wolfenbüttel

Das Elektrofahrzeug ist mehr als nur Karosserie, Batterie und Elektromotor

Quelle: Volkswagen AG

 ${\sf Elektromobilit\"{a}t-CEMO-Landrath}$

Hameln - 22.08.2019

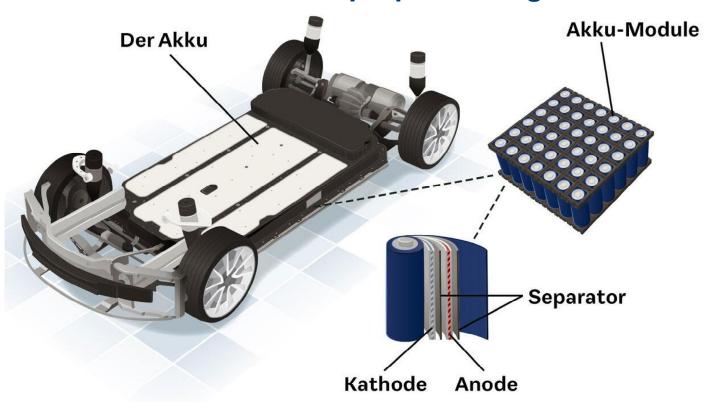
Ostfalia Hochschule für angewandte Wissenschaften

Wolfenbütte

Batteriesystem eines Elektro-Konversionsfahrzeug

Tesla Model 3 – purpose design

https://www.autoscout24.de/auto/tesla/tesla-model-3/


Elektromobilität - CEMO - Landrath

Hameln - 22.08.2019

Wolfenbüttel

Tesla Model 3 – purpose design

Tesla Model 3 – Technische Daten

	Standard- Reichweite (geplant)	Standard- Reichweite Plus	Maximale Reichweite – Heckantrieb	Maximale Reichweite – Allradantrieb	Performance
Preis in Euro	ab 39.780 € (geschätzt)	ab 45.480 €	ab 51.680 €	ab 55.780 €	ab 65.580 €
Reichweite	350 km	415 km	600 km	560 km	530 km
0 - 100 km/h	5,6 Sekunden	5,6 Sekunden	5,4 Sekunden	4,6 Sekunden	3,4 Sekunden
Höchstge- schwindig- keit	209 km/h	225 km/h	233 km/h	233 km/h	233 km/h
max. Leistung	192 kW - 261 PS	192 kW - 261 PS	192 kW - 261 PS	258 kW - 351 PS	358 kW - 487 PS
Leergewicht	1610 kg	1730 kg	1730 kg	1847 kg	1847 kg

Quelle: https://www.model3.info/de/tesla-model-3-technische-daten

Hameln - 22.08.2019

Elektromobilität – CEMO – Landrath

Ladeinfrastruktur

Ostfalia
Hochschule für angewandte
Wissenschaften

Combined Charging System (**CCS**; deutsch kombiniertes Ladesystem) ist ein internationaler Ladestandard für Elektrofahrzeuge. Die Steckervarianten und Ladeverfahren sind in Teil 3 der IEC 62196 (DIN EN 62196) genormt.

Combined Charging System – ein System für AC- und DC-Laden

Ladepunkt	Funktionen	Stecker	Kommunikation	Ladedose
AC 1-/3-phasig	1-phasiges AC-Laden/ 3-phasiges AC-Laden mit Stecker Typ 2 IEC 62196-2	Typ 2	ISO 15118	
DC	DC-Laden mit Stecker Combo 2 IEC 62196-3	Combo 2	ISO 15118	

BDEW, DKE, ZVEH, ZVEI: Technischer Leitfaden Ladeinfrastruktur Elektromobilität

Ladeinfrastruktur

Ostfalia
Hochschule für angewandte
Wissenschaften

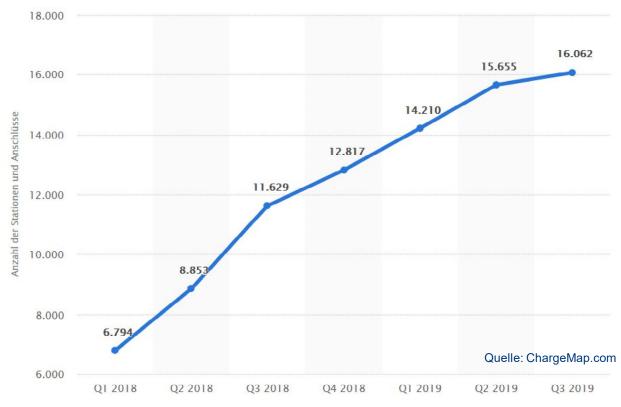
Wolfenbüttel

Anteile der Ladevorgänge	Privater Aufstellort: aktuell 85 %			Öffentlich zugänglicher Aufstellort: aktuell 15 %			
Typische Standorte für Lade- infrastruktur	Einzel- / Doppel- garage bzw. Stellplatz beim Eigenheim	Parkplätze bzw. Tiefgarage von Wohnanlagen, Mehrfamilien- häusern, Wohn- blocks	Firmenpark- plätze auf eigenem Gelände	Autohof, Autobahn- Raststätte	Einkaufs- zentren, Parkhäuser, Kundenpark- plätze	Straßenrand / öffentliche Parkplätze	
Vorgaben zur Lade- technologie	Combined Charging System vorschreiben			Combined Charging System als Mindeststandard in Ladesäulenverordnung vorgeschrieben			
Ladedauer für 20 kWh (Verbrauch für 100 km) Ladedauer perspektivisch	6 Stunden (AC 3,7 kW)	6 Stunden (AC 3.7 kW) 1-2 Stunden (AC/DC 11-22 kW)	6 Stunden (AC 3,7 kW)	30 Minuten (DC 50 kW) 10 Minuten (DC 150 kW) wenige Minuten (DC 350 kW)	6 Stunden (AC 3.7 kW)	1-2 Stunden (AC/DC 11-22 kW)	
Strom- versorgung	Über vorhandenen Hausanschluss	Über vorhandenen Anschluss der Anlage oder separaten Anschluss an das Niederspannungs- bzw. Mittelspannungsnetz				Über vorhandene Infrastruktur (z.B. Straßenbeleuch- tung) oder neuen Anschluss an das Niederspannungs- bzw. Mittel- spannungsnetz	
Abrechnung	Abrechnung möglich je nach gewünschtem Geschäftsmodell, z.B.: - kostenlos - pauschal - nach Ladeleistung - nach bezogener Energiemenge						

Ladeinfrastruktur

Die meisten Nutzer nutzen eine private Lademöglichkeit. Wer lange Strecken fährt, lädt unterwegs an 10.700 (2017) 20.650 (2019) öffentlich zugänglichen Ladepunkten an 4.730 (2017) 16.062 (2019) Ladesäulen

Hameln – 22.08.2019


Elektromobilität – CEMO – Landrath

Ostfalia
Hochschule für angewandte
Wissenschaften

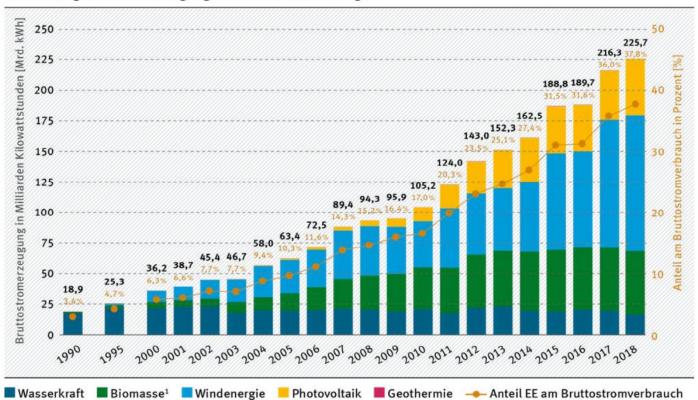
Wolfenbüttel

Anzahl der Ladestationen für Elektrofahrzeuge in Deutschland im Zeitraum 1. Quartal 2018 bis 3. Quartal 2019 (Stand: 01. August 2019)

Elektromobilität → Regenerative Energie

Regenerative Energieversorgung

Elektromobilität – CEMO – Landrath


Hameln - 22.08.2019

Regenerative Energieversorgung

Ostfalia
Hochschule für angewandte
Wissenschaften

Wolfenbüttel

Entwicklung der Stromerzeugung aus erneuerbaren Energien

¹ inkl. feste und flüssige Biomasse, Biogas, Biomethan, Deponiegas, Klärgas, Klärschlamm sowie dem biogenen Anteil des Abfalls

 $\label{thm:quelle: Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat)} Quelle: Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat)$

Regenerative Energieversorgung

Wolfenbüttel

Energiebedarf für 1.000.000 Elektrofahrzeuge

Annahmen:

Fahrstrecke pro Jahr: 15.000 km Energieverbrauch je 100 km 20 kWh

Energiekosten pro 100 km 6 € (bei 30 Cent je kWh)

Energieverbrauch pro Jahr: 3000 kWh

Energiebedarf von 1.000.000 Elektrofahrzeugen: 3.000.000.000 kWh

Derzeitiger Stromverbrauch in Deutschland: ca. 600.000.000.000 kWh

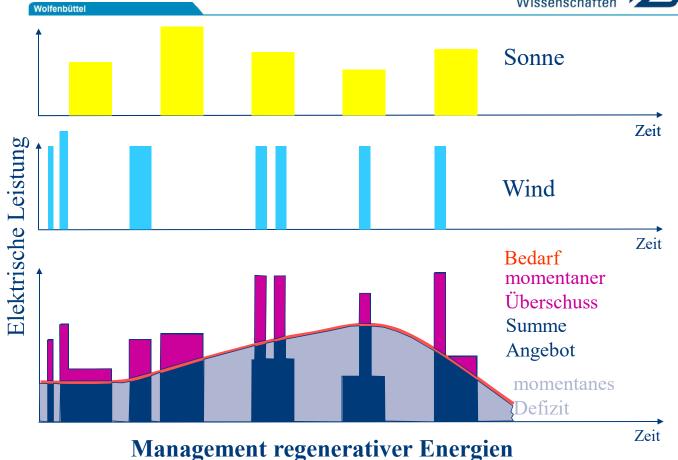
- → 1.000.000 Elektrofahrzeuge benötigen ca. 0,5 % des heutigen Strombedarfs
- → ca. 1,5 % des derzeit regenerativ erzeugten Elektrischen Stroms!

Elektromobilität – CEMO – Landrath

Wolfenbüttel


Hameln - 22.08.2019

Regenerative Energieversorgung

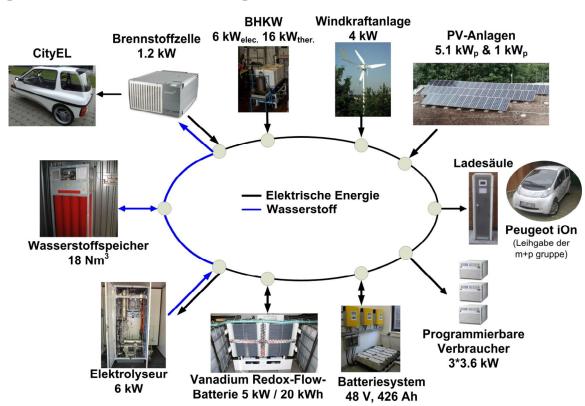


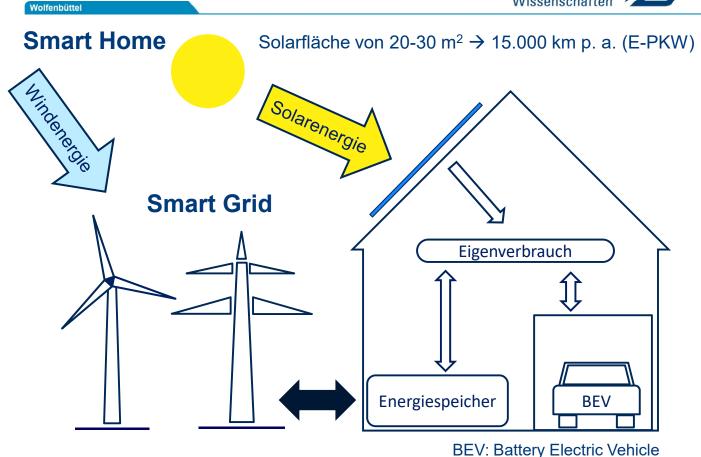
Einspeisevolatilität Wind/PV "TenneT 2012"

Regenerative Energieversorgung

Elektromobilität - CEMO - Landrath

Hameln – 22.08.2019


Regenerative Energieversorgung


Ostfalia
Hochschule für angewandte
Wissenschaften

Wolfenbüttel

Intelligent vernetzter Energiepark -Smart Grid- an der Ostfalia

Elektromobilität – CEMO – Landrath

Hameln - 22.08.2019

Wolfenbütte

Zielsetzung und Vision des Centrums für Energie und Mobilität - CEMO

- Ziel: Das Centrum für Elektromobilität der Ostfalia (CEMO) möchte einen Beitrag zur klimafreundlichen und nachhaltigen Umgestaltung der Mobilität hin zur Elektromobilität leisten und die Elektromobilität in der Region fördern.
- Die Vision ist, die für elektrisch angetriebene Fahrzeuge benötigte Energie zu 100% aus regenerativen Quellen zu gewinnen und die Alltagsmobilität mit Elektrofahrzeugen ohne Einschränkungen realisieren zu können.

Was sind die Chancen der Elektromobilität?

- Beitrag zur Verringerung der CO₂-Emissionen
- Keine lokalen Emissionen (Abgase und Geräusche)
- Reduzierung der Abhängigkeit vom Öl
- Ausbau des Technologie- und Industriestandortes Deutschland bzw. der Region
- Neue Mobilität (intelligente und multimodale Mobilitätskonzepte zur Verbesserung der Lebensqualität)
 → e-Car-Sharing, Emissionsfreie Gebiete, ...
- Attraktivitätssteigerung von Regionen z. B. im Bereich des Tourismus durch Elektromobilitätsangebote

Elektromobilität - CEMO - Landrath

Hameln - 22.08.2019

Zusammenfassung und Ausblick

Ostfalia
Hochschule für angewandte
Wissenschaften

Wolfenbüttel

- Elektrofahrzeuge sind heute als Serienprodukte erhältlich und weisen Reichweiten von 100 bis über 500 km auf.
- Elektrofahrzeuge sind am Einsatzort emissions- und somit schadstofffrei.
- Der Betrieb ist unabhängig vom Primärenergieträger und sie können einen Beitrag zur CO₂-Reduzierung leisten. Die CO₂-Bilanz (Lebenszyklus) hängt von den Randbedingungen ab.
- Wird die elektrische Energie für Elektrofahrzeuge (auch bei der Produktion) aus regenerativer Energie wie Sonne und Wind erzeugt, so ist der Betrieb CO₂-frei und somit klimafreundlich.
- Durch ein intelligentes Management der regenerativen Energieerzeugung im Zusammenwirken mit anderen Energieerzeugern, Verbrauchern und Energiespeichern (Smart Home/Grid) ist eine optimale - CO₂-arme - Energieversorgung der Elektrofahrzeuge und anderer Verbraucher möglich.